Math 113 (Calculus II)
 Exam 1

RED KEY
Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. Responses written on your exam will be ignored.

1. What is the area between $f(x)=\cos (x)$ and $g(x)=\sin (2 x)+1$ for $\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$?
a) π
b) 2π
c) $\pi / 2$
d) $1+\pi$
e) $2+\pi$
f) $1+2 \pi$

Solution: The answer is e):

$$
\begin{aligned}
& \int_{\pi / 2}^{3 \pi / 2} \sin (2 x)+1-\cos (x) d x=-\frac{1}{2} \cos (2 x)+x-\left.\sin (x)\right|_{\pi / 2} ^{3 \pi / 2} \\
& \quad=-\frac{1}{2}(-1)+\frac{3 \pi}{2}-(-1)-\left[-\frac{1}{2}(-1)+\frac{\pi}{2}-(1)\right]=\pi+2
\end{aligned}
$$

2. Find the volume of the solid obtained by revolving around the x-axis the region bounded by $y=x, x=1$, and the x-axis.
a) $\pi / 3$
b) $\pi / 4$
c) $\pi / 5$
d) $\pi / 6$
e) $\pi / 8$
f) $\pi / 10$

Solution: The answer is a):

$$
\int_{0}^{1} \pi(x)^{2} d x=\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\frac{\pi}{3}
$$

Note: you can do this another way - Revolving $y=x$ about the x axis creates a cone. In this case, the radius is 1 and the height is 1 . The volume of a cone is $V=\frac{1}{3} \pi r^{2} h$, so you can solve it geometrically, if you remember the formula.
3. Find the volume generated by rotating the region bounded by $y=x^{2}, y=0, x=1$ about the y-axis.
a) $2 \pi / 3$
b) $\pi / 2$
c) $\pi / 3$
d) 2π
e) 1
f) None of the above

Solution: The answer is b):

$$
\int_{0}^{1} 2 \pi x \cdot x^{2} d x=2 \pi \int_{0}^{1} x^{3} d x=2 \pi \cdot \frac{1}{4}=\frac{\pi}{2}
$$

4. A force of 3 lbs is required to hold a spring stretched $1 / 10$ feet beyond its natural length. How much work (in ft-lbs) is done in stretching the spring from its natural length to $1 / 2$ feet beyond its natural length?
a) $11 / 4$
b) $13 / 4$
c) $15 / 4$
d) $17 / 4$
e) $19 / 4$
f) $21 / 4$

Solution: The answer is c): Using Hooke's law: $F=k x$, we see that

$$
3=\frac{k}{10}, \text { or } k=30
$$

The work is calculated by integrating the force:

$$
W=\int_{0}^{1 / 2} 30 x d x=\left.15 x^{2}\right|_{0} ^{1 / 2}=\frac{15}{4}
$$

5. Find the average value of the function $f(x)=4 x \sin \left(x^{2}\right)$ on the interval $[0, \sqrt{\pi}]$.
a) 8
b) 4
c) $8 / \pi$
d) $8 / \sqrt{\pi}$
e) $4 / \sqrt{\pi}$
f) $4 / \pi$

Solution: The answer is e): The average value is given by

$$
\frac{1}{\sqrt{\pi}-0} \int_{0}^{\sqrt{\pi}} 4 x \sin \left(x^{2}\right) d x
$$

Using $u=x^{2}$ and $d u=2 x d x$, the above integral becomes

$$
\frac{1}{\sqrt{\pi}} \int_{0}^{\pi} 2 \sin (u) d u=-\left.\frac{2}{\sqrt{\pi}} \cos (u)\right|_{0} ^{\pi}=-\frac{2}{\sqrt{\pi}}(-1-1)=\frac{4}{\sqrt{\pi}} .
$$

6. Evaluate $\int_{0}^{1}(x+1) e^{x} d x$.
a) $e-2$
b) e
c) $3 e-3$
d) $-e$
e) $2-e$
f) none of the above

Solution: The answer is b): Use integration by parts. Let $u=x+1$, and $d v=e^{x} d x$. Then, $d u=d x$ and $v=e^{x}$.

$$
\int_{0}^{1}(x+1) e^{x} d x=\left[(x+1) e^{x}-\int e^{x} d x\right]_{0}^{1}=\left.x e^{x}\right|_{0} ^{1}=e .
$$

7. Evaluate $\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{3} x d x$.
a) 1
b) $1 / 2$
c) $1 / 4$
d) $1 / 12$
e) $1 / 24$
f) $1 / 48$

Solution: The answer is d):

$$
\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{3} x d x=\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{2} x \cos x d x=\int_{0}^{\pi / 2} \sin ^{3} x\left(1-\sin ^{2} x\right) \cos x d x
$$

Let $u=\sin x$. Then $d u=\cos x d x$, and the above integral becomes

$$
\int_{0}^{1} u^{3}\left(1-u^{2}\right) d u=\int_{0}^{1} u^{3}-u^{5} d u=\left.\left(\frac{1}{4} u^{4}-\frac{1}{6} u^{6}\right)\right|_{0} ^{1}=\frac{1}{4}-\frac{1}{6}=\frac{1}{12} .
$$

Part II: In the following problems, show all work, and simplify your results.
8. (10 points) Find the finite area bounded by $h(x)=x^{3}-2 x+3$ and $k(x)=3-x^{2}$.

Solution: First we find the points where the graphs of the two functions intersect.

$$
\begin{aligned}
h(x) & =k(x) \\
x^{3}-2 x+3 & =3-x^{2} \\
x^{3}+x^{2}-2 x & =0 \\
x\left(x^{2}+x-2\right) & =0 \\
x(x+2)(x-1) & =0 .
\end{aligned}
$$

The curves intersect when $x=0, x=1$, and $x=-2$. Here is a sketch:

So, the area A is

$$
\begin{aligned}
A & =\int_{-2}^{1}|h(x)-k(x)| d x=\int_{-2}^{0}[h(x)-k(x)] d x+\int_{0}^{1}[k(x)-h(x)] d x \\
& =\int_{-2}^{0}\left[\left(x^{3}-2 x+3\right)-\left(3-x^{2}\right)\right] d x+\int_{0}^{1}\left[\left(3-x^{2}\right)-\left(x^{3}-3 x+3\right)\right] d x \\
& =\int_{-2}^{0}\left(x^{3}+x^{2}-2 x\right) d x+\int_{0}^{1}\left(-x^{3}-x^{2}+2 x\right) d x \\
& =\left.\left(\frac{x^{4}}{4}+\frac{x^{3}}{3}-x^{2}\right)\right|_{-2} ^{0}+\left.\left(-\frac{x^{4}}{4}-\frac{x^{3}}{3}+x^{2}\right)\right|_{0} ^{1} \\
& =\left(\frac{0^{4}}{4}+\frac{0^{3}}{3}-0^{2}\right)-\left(\frac{(-2)^{4}}{4}+\frac{(-2)^{3}}{3}-(-2)^{2}\right)+\left(-\frac{1^{4}}{4}-\frac{1^{3}}{3}+1^{2}\right)-\left(-\frac{0^{4}}{4}-\frac{0^{3}}{3}+0^{2}\right) \\
& =0-\left(4-\frac{8}{3}-4\right)+\left(-\frac{1}{4}-\frac{1}{3}+1\right)-0=\frac{8}{3}+\left(-\frac{3}{12}-\frac{4}{12}+\frac{12}{12}\right)=\frac{8}{3}+\frac{5}{12}=\frac{32}{12}+\frac{5}{12} \\
& =\frac{37}{12}
\end{aligned}
$$

9. (10 points) Find the volume of the solid whose base is the region bounded by $y=x^{3}, y=1$, and the y-axis, and whose cross-sections perpendicular to the y-axis are equilateral triangles.
Solution: Since the cross section goes from the y axis to $y=x^{3}$, the cross section is $x=y^{1 / 3}$. Since the area of an equilateral triangle with side s is $\frac{\sqrt{3}}{4} s^{2}$, the the cross sectional area of this object is $A(y)=\frac{\sqrt{3}}{4}\left(y^{1 / 3}\right)^{2}=\frac{\sqrt{3}}{4} y^{2 / 3}$. Thus, the volume is

$$
V=\int_{0}^{1} \frac{\sqrt{3}}{4} y^{2 / 3} d y=\left.\frac{\sqrt{3}}{4} \cdot \frac{3}{5} y^{5 / 3}\right|_{0} ^{1}=\frac{3 \sqrt{3}}{20}
$$

10. (10 points) Use CYLINDRICAL SHELLS to find the volume generated by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2$.

Solution:

$$
\begin{aligned}
V=\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x & =2 \pi \int_{0}^{1} x^{3}-3 x^{2}+2 x d x=\left.2 \pi\left(\frac{1}{4} x^{4}-x^{3}+x^{2}\right)\right|_{0} ^{1} \\
& =2 \pi\left(\frac{1}{4}-1+1\right)=\frac{\pi}{2}
\end{aligned}
$$

11. (10 points) A 20 foot chain weighs 30 lbs per foot and hangs vertically from a ceiling. Find the work done in lifting the lower end of the chain so that it's level with the upper end.
Solution: There are many equivalent ways to solve this problem. Here is one:
Notice, if you are lifting the chain to the top of the ceiling, if you have gone up x feet, then there is $20-x$ feet of chain above you. The rest of the chain is doubled in half, however, and the rest of the chain is x feet. That means you are holding $x / 2$ feet of chain. Hence, the force function is $F(x)=30 \cdot x / 2=15 x$. The work is

$$
W=\int_{0}^{2} 015 x d x=\left.\frac{15}{2} x^{2}\right|_{0} ^{20}=\frac{15}{2} \cdot(20)^{2}=\frac{15}{2} \cdot 400=3000 \mathrm{ft}-\mathrm{lbs}
$$

12. (10 points) For $f(x)=1-6 x+3 x^{2}$, find the number(s) x such that $f(x)$ is equal to the average value of $f(x)$ on the interval [0,2].
Solution: The average value of f is

$$
\frac{1}{2-0} \int_{0}^{2} 1-6 x+3 x^{2} d x=\left.\frac{1}{2}\left(x-3 x^{2}+x^{3}\right)\right|_{0} ^{2}=\frac{1}{2}(2-3 \cdot 4+8)=-1 .
$$

We need to find c so that $f(c)=-1$. Thus,

$$
1-6 c+3 c^{2}=-1
$$

or

$$
3 c^{2}-6 c+2=0
$$

Applying the quadratic formula, we have $c=\frac{6 \pm \sqrt{36-24}}{6}$, or $c=1 \pm \frac{\sqrt{3}}{3}$. Note that both of these are in the interval in question.
13. (7 points) Evaluate $\int e^{x} \cos x d x$.

Solution: We use integration by parts: $u=e^{x}, d u=e^{x} d x, d v=\cos x, v=\sin x$.

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

We apply integration by parts on the second integral: $u=e^{x}, d u=e^{x} d x, d v=\sin x$, $v=-\cos x$.

$$
\int e^{x} \cos x d x=e^{x} \sin x-\left(-e^{x} \cos x+\int e^{x} \cos x d x\right)=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
$$

Thus,

$$
2 \int e^{x} \cos x d x=e^{x} \sin x+e^{x} \cos x+C
$$

or

$$
\int e^{x} \cos x d x=\frac{1}{2} e^{x} \sin x+\frac{1}{2} e^{x} \cos x+C
$$

14. (8 points) Evaluate $\int \sec x \tan ^{3} x d x$.

Solution:

$$
\int \sec x \tan ^{3} x d x=\int \tan ^{2} x \sec x \tan x d x=\int\left(\sec ^{2} x-1\right) \sec x \tan x d x
$$

Use $u=\sec x, d u=\sec x \tan x d x$:

$$
\int \sec x \tan ^{3} x d x=\int u^{2}-1 d u=\frac{1}{3} u^{3}-u+C=\frac{1}{3} \sec ^{3} x-\sec x+C .
$$

